340 research outputs found

    Occurence of common dolphins (Delphinus delphis) in the Gulf of Trieste and the northern Adriatic Sea

    Get PDF
    1. The Mediterranean common dolphin (Delphinus delphis), considered to have been very common in the past, had undergone a dramatic decline across most of the basin by the end of 1970s. In the northern Adriatic Sea, one of the regions with most available historical information, the common dolphin is thought to have been the most common and abundant cetacean throughout most of the 20th century. However, by the end of 1970s, it had virtually disappeared from the region and is now considered generally absent from the entire Adriatic Sea. 2. This contribution summarizes the occurrence of common dolphins in the Gulf of Trieste and provides a brief review of published records in other parts of the Adriatic Sea. 3. Systematic boat surveys in the wider area of the Gulf of Trieste between 2002 and 2019 confirmed that the common bottlenose dolphin (Tursiops truncatus) is the only regularly occurring cetacean species in this area. Despite this, several records of common dolphins were documented in the Gulf of Trieste between 2009 and 2012, through sightings of live animals or recovery of dead stranded animals. 4. Dorsal fin markings allowed the photo‐identification of some of these, suggesting that at least four different live individuals (three adults and one calf) occurred here in recent times. Most cases involved single adult individuals, but one included a mother‐calf pair that was temporarily resident in a port for several months, a behaviour atypical for this species. Photo‐identification showed that the presumed mother had previously been sighted in the Ionian Sea in Greece, over 1,000 km from the Gulf of Trieste, making this the longest documented movement for this species worldwide. 5. At present, the common dolphin continues to be rare in the region.Publisher PDFPeer reviewe

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    PlGFMMP9-engineered iPS cells supported on a PEGfibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium

    Get PDF
    Cell-based regenerative therapies are significantly improved by engineering allografts to express factors that increase vascularization and engraftment, such as placental growth factor (PlGF) and matrix metalloproteinase 9 (MMP9). Moreover, the seeding of therapeutic cells onto a suitable scaffold is of utmost importance for tissue regeneration. On these premises, we sought to assess the reparative potential of induced pluripotent stem (iPS) cells bioengineered to secrete PlGF or MMP9 and delivered to infarcted myocardium upon a poly(ethylene glycol)-fibrinogen scaffold. When assessing optimal stiffness of the PEG-fibrinogen (PF) scaffold, we found that the appearance of contracting cells after cardiogenic induction was accelerated on the support designed with an intermediate stiffness. Revascularization and hemodynamic parameters of infarcted mouse heart were significantly improved by injection into the infarct of this optimized PF scaffold seeded with both MiPS (iPS cells engineered to secrete MMP9) and PiPS (iPS cells engineered to secrete PlGF) cells as compared with nonengineered cells or PF alone. Importantly, allograft-derived cells and host myocardium were functionally integrated. Therefore, survival and integration of allografts in the ischemic heart can be significantly improved with the use of therapeutic cells bioengineered to secrete MMP9 and PlGF and encapsulated within an injectable PF hydrogel having an optimized stiffness

    Effects of vessel traffic on relative abundance and behaviour of cetaceans : the case of the bottlenose dolphins in the Archipelago de La Maddalena, north-western Mediterranean sea

    Get PDF
    Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.Peer reviewedPostprin

    Cancer stem cell gene profile as predictor of relapse in high risk stage II and stage III, radically resected colon cancer patients.

    Get PDF
    Clinical data indicate that prognostic stratification of radically resected colorectal cancer based on disease stage only may not be always be adequate. Preclinical findings suggest that cancer stem cells may influence the biological behaviour of colorectal cancer independently from stage: objective of the study was to assess whether a panel of stemness markers were correlated with clinical outcome in resected stage II and III colon cancer patients. A panel of 66 markers of stemness were analysed and thus patients were divided into two groups (A and B) with most patients clustering in a manner consistent with different time to relapse by using a statistical algorithm. A total of 62 patients were analysed. Thirty-six (58%) relapsed during the follow-up period (range 1.63-86.5 months). Twelve (19%) and 50 (81%) patients were allocated into group A and B, respectively. A significantly different median relapse-free survival was observed between the 2 groups (22.18 vs 42.85 months, p=0.0296). Among of all genes tested, those with the higher "weight" in determining different prognosis were CD44, ALCAM, DTX2, HSPA9, CCNA2, PDX1, MYST1, COL1A1 and ABCG2. This analysis supports the idea that, other than stage, biological variables, such as expression levels of colon cancer stem cell genes, may be relevant in determining an increased risk of relapse in resected colorectal cancer patient

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation

    Get PDF
    Adult mammalian cells can be reprogrammed to a pluripotent state by forcing the expression of a few embryonic transcription factors. The resulting induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers. It is well known that post-natal cardiomyocytes (CMs) lack the capacity to proliferate. Here, we report that neonatal CMs can be reprogrammed to generate iPS cells that express embryonic-specific markers and feature gene-expression profiles similar to those of mouse embryonic stem (mES) cell and cardiac fibroblast (CF)-derived iPS cell populations. CM-derived iPS cells are able to generate chimeric mice and, moreover, re-differentiate toward CMs more efficiently then either CF-derived iPS cells or mES cells. The increased differentiation capacity is possibly related to CM-derived iPS cells retaining an epigenetic memory of the phenotype of their founder cell. CM-derived iPS cells may thus lead to new information on differentiation processes underlying cardiac differentiation and proliferation
    • 

    corecore